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We show that inhomogeneous boundary conditions �BCs� in a distributed reaction-diffusion excitable system
are a natural source of permanent perturbations that can induce wave trains, which can be characterized as
mixed-mode temporal oscillations and, when a parameter is varied, admit a period-adding bifurcation. To that
end we analyze: a pair of coupled excitable and oscillatory cells, a distributed FitzHugh-Nagumo model, and
a distributed five-variable model that describes CO catalytic oxidation. The obtained results account for the
recently reported experimental observations of mixed-mode oscillations showing a period-adding bifurcation
during CO oxidation on a disk-shaped catalytic cloth with imposed cold temperature BC.
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While pattern formation in unbounded or large �subject to
no-flux boundary conditions �BCs�� reaction-diffusion �RD�
systems have been extensively investigated �1–4�, relatively
little attention has been paid to RD systems subject to Di-
richlet or mixed BCs. Boundary effects are important in most
catalytic systems �see review �5��, in cardiac �6� as well as in
many other systems. Pulse waves can be reflected from the
no-flux boundary in excitable RD systems �7�. The inhomo-
geneous BC may lead to various types of front reflection in a
bistable system �8� and formation of complex patterns �9� or
pseudo-reflection of waves �6� in the case of the oscillatory
media. Wave trains were found to form in discrete excitable
media that is periodically stimulated at the boundary �10�.

In this paper we demonstrate that inhomogeneous BC in
excitable RD systems can lead to spatiotemporal complex
patterns that can be characterized as mixed-mode oscillations
�see Fig. 1� with a period-adding bifurcation as a parameter
is varied. This work is motivated by our experimental obser-
vation of CO catalytic oxidation over Pd supported on a
glass-fiber cloth �11�. The experiments were conducted on a
disk-shaped surface in a continuous reactor with feed flow-
ing normal and through the cloth. The plate holding the cata-
lyst was not catalytic, and its temperature was close to the
ambient one. Typical infra-red �IR� thermograms exhibit
mixed-mode relaxation oscillations: a hot spot expands and
contracts continuously �small-amplitude fast �1 min� oscilla-
tions� superimposed on the active phase of the long duration
�10–60 min� cycle �Fig. 1�a��. The number of the smaller
peaks varied with operating conditions �the reactor tempera-
ture� following a period-adding mechanism �Fig. 2�a��.

A detailed mathematical model that accounts for a surface
kinetic oscillator, a solid-phase enthalpy, and a gas-phase
mass balance with five state variables was constructed and
shown to predict two types of mixed-mode oscillations �12�.
Oscillations of the first type emerge in the distributed system
subject to homogeneous �no-flux� BC and completely match
the solutions of the corresponding lumped model �LM, gov-
erned by ordinary differential equations�. The source of such
oscillations is a canard bifurcation of the reduced four-
variable subsystem of the original LM, which was derived by
converting one of the state variables, the solid phase tem-
perature, to be a prescribed parameter. Oscillations of the
second type emerge in the distributed system subject to in-

homogeneous BC in a domain of parameters that corre-
sponds to stable excitable steady states of the LM. These
were associated with sharp front propagation and qualita-
tively agree with the experimental observations �Fig. 1�b��.

Our analysis will focus on the oscillations of the second
type. Breathing spots have been computed and analyzed for
activator-inhibitor systems �13–15�, mainly in systems in
which the inhibitor diffusivity is sufficiently large; it was
experimentally observed in Ref. �16� and a corresponding
analysis using a FitzHugh-Nagumo �FHN� bistable system
subject to no-flux conditions attributed it to the interaction of
the front with a boundary. Such mechanisms do not apply to
catalytic systems.

The five-variable CO-oxidation model �12� can be quali-
tatively described by features similar to the models studied
here: It is an activator-inhibitor oscillator with wide separa-
tion of time scales, coupled with an enthalpy balance which
accounts for conduction and for temperature spatial distribu-
tion and boundary conditions of a fixed �cold� temperature at
the catalyst’s rim. Since temperature affects mainly the acti-
vator in the oscillator, we mimic it by a FHN or two-cell
models with a diffusing fast activator and a slow inhibitor.
Thus, the distributed FHN model, which is studied below,
should capture the main features of the realistic RD system.

To qualitatively understand the effect of BC, consider a

FIG. 1. �Color online� Typical mixed-mode oscillating patterns
on a disk: �a� experiments on CO oxidation, the plate shows the
square root of the active fraction of the surface �11�; �b� simulations
of CO oxidation �12�; �c� x pattern simulated with the FHN model
�Eqs. �5�–�7�, �=0.805; h=100, xw=−1/�3, R=10�.
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lumped many-cell version of the distributed model assuming
that all cells with the exception of the last one are excitable,
in the absence of interaction, while the last �boundary� one is
stable but belongs to the null-cline branch opposite of the
fixed point of the excitable cells. The interaction of adjacent
cells causes gradual shifting of each “individual” cell phase
plane starting from the edge one and will produce for one or
more cells conditions that induce an oscillatory behavior.
The chain interaction of the following cells can induce the
temporally mixed-mode oscillations. Thus, the simplest pro-
totype to yield the expected behavior is a pair of coupled
excitable and oscillatory cells. This is similar to previous
studies of an excitable cell that is periodically stimulated by
a fixed external force and was shown to exhibit a period-
adding scenario �17�. Here the oscillatory forcing system is
coupled to the excitable one.

The spatial pattern is achieved by motion of fronts
or pulses in the excitable media. As will be shown below,
all three models exhibit period-adding bifurcation with
varying a parameter that defines the effect of the boundary
conditions.

Pair of coupled and excitable and oscillatory cells. We
assume that cell 1 is excitable, while cell 2 is oscillatory and
is affected by the same factors as those of cell 1, as well as
by an external force F=h�x−xw� that mimics the BC. The
spontaneous dynamics of both cells is governed by a carica-
ture of the FHN model with a piecewise linear nonlinearity

ẋ1 = y1 − Z�x1� − D�x1 − x2� = F1�xi,y1� , �1�

ẋ2 = y2 − Z�x2� + D�x1 − x2� − h�x2 − xw� = F2�xi,y2� , �2�

ẏi = ��− ��xi − 1� − yi� = g�xi,yi�, i = 1,2, �3�

Z�x� = �a2 + �x + 1�/� , x � �− � ,− 1� ,

a2 − 0.5�a2 − a1��x + 1� , x � �− 1,1� ,

a1 + �x − 1�/� , x � �1, � � ,

�4�

with � ,��1. We assume that the fixed point of a single
isolated cell xs �with D=h=0� is excitable and xw belongs to
the branch opposite of xs �Fig. 3�a��. Keeping in mind that �,

FIG. 2. �Color online� Typical bifurcation diagrams: �a� the ob-
served number of high-frequency cycles during CO catalytic oxida-
tion vs the reactor temperature �11�; �b� Poincaré sections of the
two-cell model showing cell 1 values �y1

*� at the switching points of
cell 2 from the lower to upper branches nullcline F2=0, �Eqs.
�1�–�4�, a1=−1, a2=20, D=1, �=12.5, �→0�; �c� simulations of
the FHN model in a planar 1D system �Eqs. �5�–�7�, L=160,
h=100, xw=−1/�3, �=0.1�

FIG. 3. �Color online� Coupled cells model �Eqs. �1�–�4��. Plate
�a� shows a phase plane with nullcline g�x ,y�=0 �dotted line�,
source function Z�x� �dash-dotted� and the intermediate branches of
nullclines Fi�xi ,yi�=0 of cells 1 �thin� and 2 �thick lines�, respec-
tively. Solid and dashed lines Fi for each cell are calculated with an
assumption that the other cell belongs to the upper �solid� and lower
�dashed� branches, respectively. The star marks a fixed point of the
isolated cell. Plates �b� and �c� show fragments of the temporal
profiles y2�t� and y1�t� of P1

3�P1
2�38 solution in the vicinity of the

“defect” oscillation P1
3. Plate �d� presents a return map constructed

by Poincaré section showing y1 values �y1
*, points in �c�� at times

corresponding to local maxima in y2�t� �points in �b��.
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��1 while a1, a2�O�1�, the dynamics of each cell can be
described by a binary model with xi� +1 or −1 along the
upper or lower branches Z�x�, respectively. We can construct
phase planes of each cell, assuming that the other cell
moves along one of the stable branches of the corresponding
null curve. The limit points of the phase plane of cell
1 coincide with the limit points of function Z�x� if both
cells move along the same branch and are shifted by 2D if
the cells belong to the opposite branches. The limit points
of the phase plane of cell 2 get additional shifting at the
upper branch by 2h due to the external forcing. Simple
geometrical consideration allows derivation of the following
conditions for cell 1 to be excitable and cell 2 to be oscilla-
tory: ys−a1�2h�a2−a1−2D, ys−a1�2D�a2−a1−2h.

Analysis of system �1�–�4� even in the case of a binary
model ��→0�, is rather cumbersome: we can define up to
three and four different close orbits based on various sets of
limit points for cells 1 and 2 while a continuous spectrum is
expected within these intervals.

A typical numerically calculated bifurcation diagram of
the binary model is presented in Fig. 2�b�. It is constructed
by Poincaré sections showing y1 values at times correspond-
ing to cell 2 switching from the lower to upper branch of
null-curve F2=0 �at local maxima y2�t��. The bifurcation dia-
gram exhibits domains of regular P1

n solutions �one oscilla-
tion of the excitable cell is coupled with n oscillations of the
oscillatory cell�. And we detected two types �I, II, see Ref.
�18�� of period-adding bifurcations. For example, for a set of
parameters used in Fig. 2�b� we found windows of chaotic
behavior between domains P1

2 and P1
3, or P1

6 and P1
7, etc.,

while transitions P1
4→P1

5 and P1
5→P1

6 occur without any in-
termediate states �up to resolution of 10−4 in h�. A complex
P1

3�P1
2�38 solution �i.e., a cycle is composed of one P1

3 oscil-
lation coupled with 38 oscillations of P1

2 type� is illustrated
by Figs. 3�b� and 3�c�. The corresponding return map �Fig.
3�d�� constructed by the Poincaré section �Fig. 2�b�� exhibits
two separate branches with negative slopes and several iso-
lated points corresponding to the system behavior in the vi-
cinity of the “defect” oscillation P1

3. With increasing com-
plexity of the solution the corresponding return map
becomes more complex as well, e.g., for a �P1

3P1
4�4P1

4 solu-
tion �h�6.1, within transition P1

3→P1
4� the return map is

composed of five separated branches of different slopes.
This is in principal difference with the single periodically
stimulated excitable cell �17�, which does not exhibit chaotic
response.

In the case of finite � the limit solutions considered above
can be referred to as outer solutions �following Ref. �17��
and we expect to find some new bifurcation structures. The
detailed analysis of this problem is beyond the scope of the
present paper.

Distributed FitzHugh-Nagumo system. We employ a
simple model with a fast distributed activator, and a local
slow inhibitor

ẋ − �x = − x3 + x + y = f�x,y� , �5�

ẏ = ��− �x − y + 	� = g�x,y� �6�

subject to the following boundary conditions:


 = 0:�x/�
 = 0, 
 = L:�x/�
 = h�x − xw� , �7�

where 
 denotes the spatial or radial coordinate in a planar
case or in a disk, respectively. The diffusion coefficient �D�
is set to unity in Eq. �5� after rescaling the length with re-
spect to �D, while the dimensionless system length is L. We
keep the steady state solution �SS� fixed at xs

+ �=0.7� and vary
parameters � �	 is adjusted to keep the SS�, xw �always
negative� and h. For such a choice the lumped system pos-
sesses three SS solutions �xs

± and x0� when ���1�0.6325
and a single steady state when ���1. The xs

+ state is excit-
able, x0 is a saddle point and xs

− admits a Hopf bifurcation at
�H=1− �xs

+�2− �xH�2−xs
+xH�0.5933 with xH=−��1−�� /3.

Numerical simulations of one-dimensional �1D� Cartesian
system revealed that the stationary quasi-homogeneous solu-
tion �with x�
�� �xs

− ,xw�� bifurcates to moving patterns at a
certain threshold value �* around �H. The sustained pattern
�Fig. 4�a�� exhibits a narrow front separating domains with
x=xs

+ and x=xs
−, that is bouncing from both boundaries.

For ���* we detected four subdomains of different system
behavior: �i� patterns with a source point �SP, Fig. 4�b��;
�ii� simple wave trains �Fig. 4�c��; �iii� traveling pulses
of complex structure with period-adding bifurcations
�Figs. 4�d� and 4�e� and Fig. 1�c�; �iv� a quasi-stationary
solution with x�
�=xs

+ for most part of the region and small
amplitude spatiotemporal oscillations near the boundary

FIG. 4. �Color online� Typical bifurcation sequence of spatio-
temporal x pattern of the FHN model �Eqs. �5�–�7�� with varying
parameter � in a long system: �a� back-and-force pulse ��=0.59�,
�b� periodic traveling pulses with a source point �0.590 25�; moving
pulses of P1

1 �0.70, c�, P1
2 �0.710, d�, P1

5P1
7 �0.713, e� types, and a

quasi-stationary pattern with a period-one small amplitude oscilla-
tions �0.715, f�, �=0.1, h=100, xw=−1/�3.
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=L �Fig. 4�f��. Just above that domain the system exhibits a
stationary solution.

Let us focus on the system behavior within subdomain
�iii�. The state variables exhibit small-amplitude temporal os-
cillations in the vicinity of the right boundary which admit
period-adding bifurcations with varying any of the param-
eters: �, h, xw. Some of these oscillations will induce a trav-
eling pulse that moves through most parts of the computa-
tional domain. The spatial period can be estimated by the
velocity and the global period of the temporal oscillations.
Domains of regular P1

n solutions were always found to be
alternated by windows of chaotic behavior but we did
not detect any regular tendency of the staircase structure. For
a set of parameters employed in Fig. 2�c� we found a domain
of P1

5P1
7 solution �Fig. 4�e��, while a stable P1

6 was not
observed.

The boundaries of the detected subdomains �i− iv above�
depend on the system parameters: they are shifted toward
lower � values with increasing xw or decreasing h, i.e., with
weakening the impact of BC. We will briefly list several
essential features of sustained patterns within the other sub-
domains: In subdomain �i� two opposite propagating ignition
fronts are born at the source point �SP� within the computa-
tional domain. The left front leaves the system �no-flux BC�
while the right front is reflected from 
=L boundary. With
increasing � the SP moves from the left boundary �at �*�
toward 
=L. Within subdomain �iv� with decreasing � the
system exhibits a sequence of period-doubling bifurcations

which switch to chaotic behavior and terminate at the critical
point.

Numerical two-dimensional simulations on a disk re-
vealed only axisymmetric patterns. For sufficiently large
R these patterns admit with varying a parameter the same
bifurcation sequence which was detected for a planar case
and the boundaries of the subdomains practically coincide
with those of the 1D system. With decreasing R, the domain
of complex patterns is shifted �particularly, toward largest
��. For relatively small R the moving train solution can
be “arrested” and, moreover, the direction of the front propa-
gation can be changed �the similar tendency was revealed in
a planar system of small L�. The observed patterns are of the
form of breathing motion �Fig. 1�c��. Such patterns are in a
good qualitative agreement with our experimental results and
numerical simulations of pattern states during CO catalytic
oxidation �12�.

In summary we showed that inhomogeneous BC in dis-
tributed excitable media can induce moving pulses. The bi-
furcation structure can be described as period adding sepa-
rated by windows of chaotic behavior. The proposed
mechanism allows one to explain experimentally observed
patterns during catalytic CO oxidation. Similar mechanisms
can be applied for many other systems.
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